Cato Networks, provider of the world’s leading single-vendor SASE platform, introduced today real-time, deep learning algorithms for threat prevention as part of Cato IPS. The algorithms leverage Cato’s unique cloud-native platform and vast data lake to provide highly accurate identification of malicious domains, which are often used in phishing and ransomware attacks. In testing, the deep learning algorithms identified nearly six times more malicious domains than reputation feeds alone. Cato’s Security Research Manager, Avidan Avraham, and Cato Data Scientist Asaf Fried presented on the use of machine learning to detect C2 communications at the AWS Summit in Tel Aviv.
Tapping Deep Learning to Stop Phishing and Ransomware Attacks
Real-time identification of malicious domains and IPs is essential to stopping phishing, ransomware, and other cyber threats. The traditional approach – relying on domain reputation feeds to categorize and identify malicious domains – has proven far too inaccurate as domain generation algorithms (DGAs) enable attackers to quickly generate new domains, which lack reputation. At the same time, users continue to click through to malicious domains mimicking well-known brands (such as microsoftt[dot]com or amazonlink[dot]online) whose lack of reputation also makes detection by reputation feeds alone unreliable.
Cato’s real-time, deep-learning algorithms address both problems. The algorithms prevent access to DGA-registered domains by identifying those new domains infrequently visited by users and with letter patterns common to DGAs. They block cybersquatting by hunting for domains with letter patterns similar to well-known brands. And the algorithms stop brand impersonation by examining parts of the webpage, such as the favicon, images, and text.
These radical advancements in network security are enabled by the cloud-native architecture of Cato’s technology. Real-time deep learning algorithms require significant compute resources to avoid disrupting the user experience. The Cato SASE Cloud provides those resources. In milliseconds, Cato inspects flows, extracts their destination domain, measures the domain’s risk, and infers the necessary results from the traffic without disrupting the user experience.